2024国考:代入排除巧解行测逻辑题

2023-06-30 来源:

什么是代入排除法呢?

代入排除法,一是代入法,可以把题干中的限制条件代入选项,不符合的选项直接排除,最终选出正确答案;二是排除法,可以根据选项给定的情况,将选项逐一代入题干中验证,如果代入后与题干中给定的条件相冲突,则排除,直至选出正确答案。

那我们什么时候用它呢?

当选项给出的对应关系较为全面或题干条件不确定时,可以考虑使用代入排除法。

我们简单拿两道题目试一下:

例1

在年终考评中,黄某带领的团队7人中有4人被评为优秀。已知:

(1)黄、丁、陈3人中有2人是优秀;

(2)李、杨、肖、贾4人中有2人是优秀;

(3)如果杨、贾两人中有人被评为优秀的,则陈也是优秀。

根据以上陈述,可以得出以下哪项?

A.陈、肖中至少有1人被评为优秀

B.黄、李中至少有1人被评为优秀

C.丁、肖中至少有1人被评为优秀

D.丁、李中至少有1人被评为优秀

【参考解析】A。题干信息较为确定,可从选项代入解题。假设A项错误,陈、肖两个人都没有被评为优秀,根据条件(3)可知杨、贾没有被评为优秀,此时肖、杨、贾都没有被评为优秀,无法满足条件(2)的要求,则假设不成立,A项正确。故本题选A。

例2

甲、乙、丙、丁4位同学参加学校运动会。已知他们4人每人都至少获得1个奖项,4人获奖总数为10。关于具体获奖情况,4人还有如下说法:

甲:乙和丙的获奖总数为5;

乙:丙和丁的获奖总数为5;

丙:丁和甲的获奖总数为5;

丁:甲和乙的获奖总数为4。

后来得知,获得2个奖项的人说了假话,而其他人均说了真话。

根据以上信息,甲、乙、丙、丁4人具体的获奖数分别应是:

A.2、3、2、3 B.2、4、1、3

C.2、2、2、4 D.2、2、3、3

【参考解析】C。题干信息和选项均较为确定,可从选项入手解题。观察4个选项发现,甲的获奖数都是2,再结合题干信息可知,获得2个奖项的人说了假话。由此可知甲说了假话,那么乙和丙的获奖总数不是5。再回归选项可发现,只有C选项的乙和丙的获奖总数不是5,故本题选C。

什么是代入排除法呢?

代入排除法,一是代入法,可以把题干中的限制条件代入选项,不符合的选项直接排除,最终选出正确答案;二是排除法,可以根据选项给定的情况,将选项逐一代入题干中验证,如果代入后与题干中给定的条件相冲突,则排除,直至选出正确答案。

那我们什么时候用它呢?

当选项给出的对应关系较为全面或题干条件不确定时,可以考虑使用代入排除法。

我们简单拿两道题目试一下:

例1

在年终考评中,黄某带领的团队7人中有4人被评为优秀。已知:

(1)黄、丁、陈3人中有2人是优秀;

(2)李、杨、肖、贾4人中有2人是优秀;

(3)如果杨、贾两人中有人被评为优秀的,则陈也是优秀。

根据以上陈述,可以得出以下哪项?

A.陈、肖中至少有1人被评为优秀

B.黄、李中至少有1人被评为优秀

C.丁、肖中至少有1人被评为优秀

D.丁、李中至少有1人被评为优秀

【参考解析】A。题干信息较为确定,可从选项代入解题。假设A项错误,陈、肖两个人都没有被评为优秀,根据条件(3)可知杨、贾没有被评为优秀,此时肖、杨、贾都没有被评为优秀,无法满足条件(2)的要求,则假设不成立,A项正确。故本题选A。

例2

甲、乙、丙、丁4位同学参加学校运动会。已知他们4人每人都至少获得1个奖项,4人获奖总数为10。关于具体获奖情况,4人还有如下说法:

甲:乙和丙的获奖总数为5;

乙:丙和丁的获奖总数为5;

丙:丁和甲的获奖总数为5;

丁:甲和乙的获奖总数为4。

后来得知,获得2个奖项的人说了假话,而其他人均说了真话。

根据以上信息,甲、乙、丙、丁4人具体的获奖数分别应是:

A.2、3、2、3 B.2、4、1、3

C.2、2、2、4 D.2、2、3、3

【参考解析】C。题干信息和选项均较为确定,可从选项入手解题。观察4个选项发现,甲的获奖数都是2,再结合题干信息可知,获得2个奖项的人说了假话。由此可知甲说了假话,那么乙和丙的获奖总数不是5。再回归选项可发现,只有C选项的乙和丙的获奖总数不是5,故本题选C。

声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。

京黔胜 电话咨询