2024省考等差数列-行测电子教材
等差数列-行测电子教材
等差数列
定义:
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差常用字母d表示。
必背公式:
等差数列的通项公式为:an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
注意: 以上n均属于正整数。
例题讲解:
等比数列分为基本等差数列,二级等差数列,二级等差数列及其变式。
【1】基本等差数列例题:12,17,22,,27,32,( )
解析:后一项与前一项的差为5,括号内应填27。
【2】二级等差数列:后一项减前一项所得的新的数列是一个等差数列。
例题: -2,1,7,16,( ),43
A.25 B.28 C.31 D.35
【3】二级等差数列及其变式:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列有关。
例题:15. 11 22 33 45 ( ) 71
A.53 B.55 C.57 D. 59
『解析』 二级等差数列变式。后一项减前一项得到11,11,12,12,14,所以答案为45+12=57。
2,5,8,()
【4】A 10 B 11 C 12 D 13
【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【5】3,4,6,9,(),18
A 11 B 12 C 13 D 14
【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,
等差数列-行测电子教材
等差数列
定义:
等差数列,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差常用字母d表示。
必背公式:
等差数列的通项公式为:an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2
注意: 以上n均属于正整数。
例题讲解:
等比数列分为基本等差数列,二级等差数列,二级等差数列及其变式。
【1】基本等差数列例题:12,17,22,,27,32,( )
解析:后一项与前一项的差为5,括号内应填27。
【2】二级等差数列:后一项减前一项所得的新的数列是一个等差数列。
例题: -2,1,7,16,( ),43
A.25 B.28 C.31 D.35
【3】二级等差数列及其变式:后一项减前一项所得的新的数列是一个基本数列,这个数列可能是自然数列、等比数列、平方数列、立方数列有关。
例题:15. 11 22 33 45 ( ) 71
A.53 B.55 C.57 D. 59
『解析』 二级等差数列变式。后一项减前一项得到11,11,12,12,14,所以答案为45+12=57。
2,5,8,()
【4】A 10 B 11 C 12 D 13
【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【5】3,4,6,9,(),18
A 11 B 12 C 13 D 14
【解答】答案为C。这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。显然,括号内的数字应填13。在这种题中,虽然相邻两项之差不是一个常数,
声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。