工程问题-行测

2023-12-29 来源:

工程问题-行测电子教材

工程问题

  工作量=工作效率×时间.

  所需时间=工作量÷工作效率

一、两个人的问题

  标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.

  例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

  解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 × 3)÷ 3= 4(天).

  解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3.

  甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).

  例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?

  解:共做了6天后,

  原来,甲做 24天,乙做 24天,

  现在,甲做0天,乙做40=(24+16)天.

  这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率

  例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?

  解:先对比如下:

  甲做63天,乙做28天;

  甲做48天,乙做48天.

  就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的

  甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做

  因此,乙还要做

  28+28= 56 (天).

  答:乙还需要做 56天.

  例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?

  解一:甲队单独做8天,乙队单独做2天,共完成工作量

  余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).

  解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天).

  解三:甲队做1天相当于乙队做3天;在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1,

  其中3天可由甲队1天完成,因此两队只需再合作1天.

  例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?

解一:如果16天两队都不休息,可以完成的工作量是4/3

  由于两队休息期间未做的工作量是1/3

  乙队休息期间未做的工作量是11/60

  乙队休息的天数是5天半.

  解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.

  两队休息期间未做的工作量是  (3+2)×16- 60= 20(份).

  因此乙休息天数是 (20- 3 × 3)÷ 2= 5.5(天).

  解三:甲队做2天,相当于乙队做3天.

  甲队休息3天,相当于乙队休息4.5天.

  如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).

  例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

  解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.

  设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.

  8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要

  (60-4×8)÷(4+3)=4(天); 8+4=12(天).

  答:这两项工作都完成最少需要12天.

  例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?

  解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.

  两人合作,共完成3× 0.8 + 2 × 0.9= 4.2(份).

  因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-3×8)÷(4.2-3)=5(天).

  很明显,最后转化成“鸡兔同笼”型问题.

工程问题-行测电子教材

工程问题

  工作量=工作效率×时间.

  所需时间=工作量÷工作效率

一、两个人的问题

  标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.

  例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?

  解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 × 3)÷ 3= 4(天).

  解三:甲与乙的工作效率之比是 6∶ 9= 2∶ 3.

  甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).

  例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?

  解:共做了6天后,

  原来,甲做 24天,乙做 24天,

  现在,甲做0天,乙做40=(24+16)天.

  这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率

  例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?

  解:先对比如下:

  甲做63天,乙做28天;

  甲做48天,乙做48天.

  就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的

  甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做

  因此,乙还要做

  28+28= 56 (天).

  答:乙还需要做 56天.

  例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?

  解一:甲队单独做8天,乙队单独做2天,共完成工作量

  余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).

  解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 × 8- 1× 2)÷(3+1)= 1(天).

  解三:甲队做1天相当于乙队做3天;在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1,

  其中3天可由甲队1天完成,因此两队只需再合作1天.

  例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?

解一:如果16天两队都不休息,可以完成的工作量是4/3

  由于两队休息期间未做的工作量是1/3

  乙队休息期间未做的工作量是11/60

  乙队休息的天数是5天半.

  解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.

  两队休息期间未做的工作量是  (3+2)×16- 60= 20(份).

  因此乙休息天数是 (20- 3 × 3)÷ 2= 5.5(天).

  解三:甲队做2天,相当于乙队做3天.

  甲队休息3天,相当于乙队休息4.5天.

  如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).

  例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?

  解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.

  设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.

  8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要

  (60-4×8)÷(4+3)=4(天); 8+4=12(天).

  答:这两项工作都完成最少需要12天.

  例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?

  解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.

  两人合作,共完成3× 0.8 + 2 × 0.9= 4.2(份).

  因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-3×8)÷(4.2-3)=5(天).

  很明显,最后转化成“鸡兔同笼”型问题.

声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。

京黔胜 电话咨询