2025年国考行测解题技巧:利用特值法巧解工程问题

2024-10-16 来源:

行测数量考试中工程问题是热门题型之一,其中又以多者合作尤为常考,多者合作指一项工程是由两个或两个以上对象合作完成,解决该类问题的关键点在于梳理合作时的工作情况,一般情况下我们会结合工程问题的基本公式构建方程。除此之外,我们也常常使用特值解决多者合问题,接下来带大家一起来看几种在工程问题中常用的设特值的方法:

一、将各主体完工天数的最小公倍数设为工作总量

【例1】一批零件若交由赵师傅单独加工,需要10天完成;若交由孙师傅单独加工,需要15天完成。两位师傅一起加工这些零件,需要(  )天完成。

A.5

B.6

C.7

D.8

答案:B

【解析】设零件总数为30,则赵师傅每天完成3,孙师傅每天完成2,两人一起加工需要30÷(3+2)=6天完成,选择B。

二、将各主体的效率比直接设为效率

【例2】甲、乙、丙三人共同完成一项工作需要6小时。如果甲与乙的效率比为1∶2,乙与丙的效率比为3∶4,则乙单独完成这项工作需要多少小时?

A.10

B.17

C.24

D.31

答案:B

【解析】由题可知,甲、乙、丙的工作效率之比为3∶6∶8,则可设甲、乙、丙的工作效率分别为3、6、8,故总工作量为(3+6+8)×6,因此乙单独完成这项工作需要(3+6+8)×6÷6=17小时。故本题选B。

三、多个主体合作,且每个主体的工作效率一样时,设每个主体的工作效率为1

【例3】某茶园需要在一定时间内完成采摘。前4天安排了20名采茶工,完成了五分之一的工作量。如果再用10天完成全部采摘,至少还需要增加(  )名采茶工。

A.12

B.11

C.10

D.9

答案:A

【解析】设一名采茶工一天的工作量为1,则前4天20名采茶工完成的工作量为4x20=80,占工作量的\,则采摘茶叶的工作总量为\,此时剩余工作量为\,若在10天完成,则需要320÷10=32名采茶工,因此至少还需要增加32-20=12名采茶工。故本题选A。

 

行测数量考试中工程问题是热门题型之一,其中又以多者合作尤为常考,多者合作指一项工程是由两个或两个以上对象合作完成,解决该类问题的关键点在于梳理合作时的工作情况,一般情况下我们会结合工程问题的基本公式构建方程。除此之外,我们也常常使用特值解决多者合问题,接下来带大家一起来看几种在工程问题中常用的设特值的方法:

一、将各主体完工天数的最小公倍数设为工作总量

【例1】一批零件若交由赵师傅单独加工,需要10天完成;若交由孙师傅单独加工,需要15天完成。两位师傅一起加工这些零件,需要(  )天完成。

A.5

B.6

C.7

D.8

答案:B

【解析】设零件总数为30,则赵师傅每天完成3,孙师傅每天完成2,两人一起加工需要30÷(3+2)=6天完成,选择B。

二、将各主体的效率比直接设为效率

【例2】甲、乙、丙三人共同完成一项工作需要6小时。如果甲与乙的效率比为1∶2,乙与丙的效率比为3∶4,则乙单独完成这项工作需要多少小时?

A.10

B.17

C.24

D.31

答案:B

【解析】由题可知,甲、乙、丙的工作效率之比为3∶6∶8,则可设甲、乙、丙的工作效率分别为3、6、8,故总工作量为(3+6+8)×6,因此乙单独完成这项工作需要(3+6+8)×6÷6=17小时。故本题选B。

三、多个主体合作,且每个主体的工作效率一样时,设每个主体的工作效率为1

【例3】某茶园需要在一定时间内完成采摘。前4天安排了20名采茶工,完成了五分之一的工作量。如果再用10天完成全部采摘,至少还需要增加(  )名采茶工。

A.12

B.11

C.10

D.9

答案:A

【解析】设一名采茶工一天的工作量为1,则前4天20名采茶工完成的工作量为4x20=80,占工作量的\,则采摘茶叶的工作总量为\,此时剩余工作量为\,若在10天完成,则需要320÷10=32名采茶工,因此至少还需要增加32-20=12名采茶工。故本题选A。

 

声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。

京黔胜 电话咨询